1 ライプニッツの数学的貢献

1.1 数学的貢献

1) 無限小解析（微分積分学）：

(a) （円をはじめとする）円錐曲線の算術的求積、
(b) 接線法・逆接線法を通じた微分計算とその逆計算の公式化、
(c) 上記にとって本質的な記号 dx, f の導入、「関数」（functio）、「座標」（coordinata）、「超越的」（transcendens）といった用語の使用、
(d) 超絶曲線（サイクロイド、懸垂線等）への接線法、求積法の研究、
(e) 未定係数法による無限級数の決定法、
(f) 「包絡線」の発想を用いた曲線の構成、
(g) 無限小解析の基礎をめぐる論争、
(h) 有理量（分数関数）の積分、
(i) 2 項展開のアナログによる積の微分計算公式（いわゆる「ライプニッツの公式」）。

2) 位置解析（analysis situs）：記号による位置の表示と点の軌跡による図形の表現→ユークリッド『原論』改良を意図した基本図形の定義づけと諸命題の創出。 ①

3) 方程式論：

(a) 高次方程式の解の公式（「カルダーノの公式」）： ②

$$y^3 \pm qy - r = 0 \rightarrow y = \sqrt[3]{\frac{r}{2} + \sqrt{\left(\frac{r^2}{4} + \frac{q^3}{27}\right)}} \pm \sqrt[3]{\frac{r}{2} - \sqrt{\frac{r^2}{4} + \frac{q^3}{27}}},$$

$$x^3 - 13x - 12 = 0 \rightarrow x = \sqrt[3]{6 + \sqrt{-1225}} + \sqrt[3]{6 - \sqrt{-1225}} = 2 + \sqrt[3]{\frac{1}{3}} + 2 - \sqrt[3]{\frac{1}{3}} = 4,$$

(b) 「行列式」における符号規則（互換、「クラメルの公式」）、不定方程式論。 ③

4) 確率論：公理論的確率論、保険・年金数学。 ④

①ライプニッツ 1999, 47-54, 166-175, 245-293 頁, [Leibniz CG] 参照。
②ライプニッツ 1997, 177-202 頁。
③ライプニッツ 1999, 364-378 頁, [Leibniz A], 7-1 参照。
④[Leibniz EA], [Leibniz 2000] 参照。
2 ライプニッツの無限小解析（微分積分学）

2.1 変換定理による算術的求積

○ 1674年10月ホイヘンス宛書簡→ $\frac{\pi}{4}$ 公式（式（1））の導出が論文形式で表明される。 7
● 1682年論文「有理数によって表された外接正方形に対する円の真の比について」（図1）： 8

$$\frac{\pi}{4} = \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots ('\text{Numero Deus impare gaudet}').$$ \hspace{1cm} (1)

○ 最晩年の手稿「微分算の歴史と起源」（1714頃執筆）、未刊の著作（1993年刊）。 9

2.2 極大・極小法のアルゴリズム化

☆ 接続問題、逆接続問題を通じた記号法の開発と方法論の明確化→ 1676年頃までに確立：

● omn. $l \to \int l$ という書き換え。$\int l = ya \Rightarrow l = \frac{ya}{d}$ （「f は和を、d は差を表す」）

● 1684年論文「分数量や無理量に煩わされない極大・極小、ならびに接線を求める新方法」（図2）： 10

● 微分（差分）量を表す記号 dx を比例による正規化、

● 基本計算公式（定数倍）$d(ax) = adx$、和・差 $d\bar{x} = x\bar{d} = d\bar{x} + dw + dx$、積 $d\bar{v} = xdv + udx$、べき乗 $dx^a = ax^{a-1}dx$、積分 $d\bar{x}^b = \frac{a}{b} dx\sqrt{\bar{x}^{a-b}}$、分量 $rac{dy}{y} = \frac{\pm y^2 \sqrt[3]{x^a}}{y}$、

● 「曲線図形＝無限辺多角形」、「接線＝曲線上の無限に小さい距離を持つ2点を結ぶ直線」。

2.3 超越曲線の求積

● 1686年論文「深奥なる幾何学ならびに不可分量と無限の解析について」→「微分方程式（aequatio differentialis）」から「求和方程式（aepatio summatrix）」へ、サイクロイドの求積。 11

● 1691年論文「柔軟なものが自身の重さによって描く曲線について，…」→懸垂線の構成と求積

5[ライプニッツ 1999]，92-97，351-362頁，[Leibniz LHD]参照。
6[ライプニッツ 1988]，12-52頁，[ライプニッツ 1997]，24-66頁，[Leibniz A]，6-4参照。
7[ライプニッツ 1997]，134-145頁。
8[ライプニッツ 1997]，279-286頁。
9[ライプニッツ 1999]，317-323頁，[Leibniz 1993]参照。
10[ライプニッツ 1997]，296-307頁。
11[ライプニッツ 1997]，319-330頁。
問題。\(^{12}\)

● 1694年論文「微分算の新しい適用と、接線に関しても用られた点を様々な形で作図することへの応用」→「包絡線」の発想、曲線のパラメータ表示、「偏微分」。曲線群 \(f(x, y, b) = 0 \to f(x, y, b) = 0 \) からパラメータ \(b \) を消去し、曲線を定める（図3）：\(^{13}\)

例：曲線群 \(x^2 + y^2 + b^2 = 2bx + c^2 \)、\(ab = c^2 \to x^2 + y^2 + b^2 = 2bx + ab \) \(^{(2)}\)

式（2）を \(b \) で微分 \(2bdb = 2xdb + adb \to b = x + \frac{a}{2} \) \(^{(3)}\)

→式（3）を式（2）に代入し、曲線の式 \(y^2 = ax + \frac{a^2}{4} \) を得る。

○ 1696年6月16日付ヨハン・ベルヌーイ宛書簡→最速降下線問題（図4）。\(^{14}\)

2.4 未定係数法による無限級数の決定

● 1693年論文「無限級数による極めて一般的な新しい方法を用いて超越的な問題にも拡張される実用幾何学についての補説」：\(^{15}\)

- 双曲線下の面積（有理関数の積分 \(\int \frac{adx}{a + x} \) を求める、 \(a \) は定数）

\[
dy = \frac{adx}{a + x} \iff \frac{dy}{dx} + x \frac{dy}{dx} - a = 0 \] \(^{(4)}\)

- 式（4）に対して、形式的に \(y = bx + cx^2 + cx^3 + fx^4 + \cdots \) と無限級数を作る。

\[
\begin{align*}
\frac{dy}{dx} &= ab + 2acx + 3acx^2 + 4afx^3 + \cdots \\
x \frac{dy}{dx} &= bx + 2cx^2 + 3ex^3 + 4fx^4 + \cdots \\
-a &= a
\end{align*}
\]

- 定数項の比較により \(ab - a = 0 \) から \(b = 1 \)、\(x \) の1乗の項については、\(2ac + b = 0 \) から \(c = -\frac{1}{2a} \) となり、（以下同様に係数の比をより）

\[
y = \frac{x}{1} - \frac{x^2}{2a} + \frac{x^3}{3a^2} - \frac{x^4}{4a^3} + \cdots
\]

- 無限級数の逆表示の試み、\(x = ly + my^2 + ny^3 + py^4 + \cdots \) と形式的に展開し、

\[
\begin{align*}
a + x &= a + ly + my^2 + ny^3 + py^4 + \cdots \\
-a \frac{dx}{dy} &= -la + 2amy - 3any^2 - 4apy^3 - 5aqy^4 + \cdots
\end{align*}
\]

\(^{12}\)ライプニッツ 1997年、352-358頁。

\(^{13}\)ライプニッツ 1999年、59-67頁。

\(^{14}\)ライプニッツ 1999年、100-107頁。

\(^{15}\)ライプニッツ 1999年、12-16頁。
\[x = \frac{y}{1} + \frac{y^2}{1 \cdot 2 \cdot a} + \frac{y^3}{1 \cdot 2 \cdot 3 \cdot a^2} + \frac{y^4}{1 \cdot 2 \cdot 3 \cdot 4 \cdot a^3} + \cdots \]

ニュートンとの書簡交換「前の書簡」（1676年6月13日（新）付）とその返書（1676年8月27日（新）付）。

2.5 有理量の求積

1702年、1703年論文「和と積に関する無限の学問における解析の新しい例」、「有理求積の解析解析」→ 分数等の等を1次式、あるいは2次式に分解し、分子が定数の有理数に帰着

\[\int \frac{l}{x + e} \, dx \text{（双曲線の求積）} \]
または

\[\int \frac{mx + n}{x^2 + fx + ag} \, dx \text{（双曲線の求積）} \]

虚根「代数学の基本定理」：

例：

\[\int \frac{1}{x^4 - 1} \, dx = \frac{1}{4} \left(\frac{1}{x + 1} + \frac{1}{x - 1} \right) dx - \frac{1}{2} \int \frac{1}{x^2 + 1} \, dx \]

☆分母に1次因数のベキを含む場合の言及（式（5））：

\[h = x + a, \quad l = x + b, \quad b - a = \omega, \quad a - b = \psi \]

のとき、

\[(t = 4, \quad v = 3 \text{の例示から一般化}) \]

\[\frac{1}{h^4} = \frac{\omega^{v+1}}{\psi^{v+1}} + \frac{\omega^{v+2}}{\psi^{v+2}} + \frac{\omega^{v+3}}{\psi^{v+3}} + \cdots \]

☆虚根='エレガントで驚くべき迂回路（effugium）」、「解析における奇跡（miraculum）」、「視覚の世界の怪異（monstrum）」、「存在と非存在との間にまたがるもの（amphibium）」

☆実係数のn次多項式→実係数の1次因数と2次因数の積に分解できる。

\[\int \frac{1}{x^4 + a^4} \, dx \to x^4 + a^4 = (x + a\sqrt{-1})(x - a\sqrt{-1})(x + a\sqrt{-1})(x - a\sqrt{-1}) \]

2.6 ライプニッツの公式

1710年論文「ベキと微分の比較による代数計算と無限小計算の注目すべき対応」→ 「ライプニッツの公式」：

\[d(x^y) = 1dx \cdot x^y + e \frac{x^{y-1}}{y} dx^y + e^{e-1} \frac{x^{y-2}}{y^2} dx^y + e^{e-1} \frac{x^{y-3}}{y^3} dx^y + \cdots \]

←二項展開p^x(x + y)とのアナロジー（「量と式の間に大きな違いがある」、「ベキと微分の間に何らかのより深遠な類似性が隠れている」）

\[p(x + y) = 1p^x p^y + e \frac{p^{x-1}}{2} p^y + e^{e-1} \frac{p^{x-2}}{2} p^y + e^{e-1} \frac{p^{x-3}}{2} p^y + \cdots \]

\[d(xy) = ydx + xdy = d^3 x^3 y + d^3 x^2 y \quad \left(p^1(x + y) = x + y \right) \]

\[dd(xy) = d(ydx + xdy) = y^2 dx + 2ydx + xdy = d^3 x^3 y + d^3 x^2 y \quad \left(p^2(x + y) = 1xx + 2xy + 1yy \right) \]

16[Newton C.], 2, pp. 20-41, [Leibniz A.], 3-1, S. 558-586, [ライプニッツ 1997], 225-228頁参照。
17[ライプニッツ 1999], 207-221頁、[Leibniz GM], 5, S. 361-366。
18[ライプニッツ 1999], 229-236頁。
2.7 無限小をめぐる論争，先取権論争

☆無限小をめぐる論争→無限小「量」の存在論的疑義，古典的規範との整合性の問題。
● 1695年論文「微分あるいは無限小の方法に関するベルナルド・ニーヴェンクテル師によって提起された若干の困難に対する返答」19

1) 無限小は0ではないか→「等しい」「その差が完全に0である」「その差が比べられないくらい小さい」、「完全に0であると言わんと」とも，ただその差と比較可能な量がない，

2) 微分法は指数部分が不確定である場合（例えば，\(z = y^2 \)）の曲線の方程式には適用されない→「対数微分」の技法。

3) 1階の微分量が存在するとしても2階，3階，･･･という微分量があり得るのか→特殊な例における正当化，運動，速度との対比。

\[x\text{:幾何数列} \Rightarrow dy : dx = a : x \iff dx = \frac{xy}{a} \Rightarrow dy = \frac{dx}{a} \iff x : dx = dx : ddx \]

○ 1702年2月2日，4月14日付ヴェリニオン宛書簡：20

1) 無限大，無限小を現実に存在するものと認めない，

2) 無限小と虚数のアナロジー→「有益な，実在に基礎づけられた作り物」（fictions estant utiles et fondées en réalité），

3) 彼諦法によって証明を行なってきたアルキメデスと表現において異なるのみ，「発見の技法（ars inveniendi）に合致している」，

4) 共範疇的（syncategorematic），連続律，

☆ニュートン派と無限小解析の先取権をめぐって論争（1699年以降）。

○無限級数法，接線法の第1発見者，基礎概念，記号法→1714年手稿「微分算の歴史と起源」。21

3 関数概念について

3.1 ライプニッツの「関数」概念

○ 1673年8月手稿→ライプニッツが“functio”という用語を初めて使用する，22

● 1692年論文「順序立てて引かれ，互いに交わる無限に多くの線から形成された線とそれらすべてに接する線について」で初めて公になる→1694年論文にも記述→曲線にまつわる様々な「関連量」（＝横線，縦線，接線，法線，接線影，法線影，等々）（図5），23

○ 1714年手稿「微分算の歴史と起源」における使用→曲線の種類にかかわらず微分 \(dx, ddx \) や「微分の逆の総和」（＝積分）を \(x \) 自体の functio と見る，ベキや根 \(x, x^2, x^3, \sqrt{x} \) を「量の functio」と称する。

19[Leibniz GM], 5, S. 320-328.
20[Leibniz GM], 4, S. 91-95, 97-99.
21[ライプニッツ 1999], 305-335頁。
22[Leibniz A], 7-4, S. 656-710.
23[Leibniz GM], 5, S. 266-269, [ライプニッツ 1999], 59-67頁。
3.2 オイラーの関数概念

● 『無限解析入門』（1748年刊）第1巻における関数概念：24

● 変数（quantitas variabilis，虚数も含む），定量を用いて組み立てられた「解析的表示式」
（expressio analytica）（第1章）。

● 変数 が変数 の関数 ⇒ は変数 の関数（第1章）。

● がの関数， は他の変数 によって規定される ⇒ は によって規定される（第3章）。

● 2個または，それ以上の個数の変数によって「どのようにで組み立てられた表示式」（第5章）。

○ 『無限解析入門』第2巻における関数の幾何学的表示：25

→量的な関系を前提とし，変数 （横に伸びる不直線（abscissa）上に表示）対応する に（横
線に垂直な線分として表示）によって姿が描かれる→関数 により作り出される曲線（第1章）。

☆関数の分類（第1巻第1章）：26

1) 代数関数（functio algebraica＝「代数的な演算（変数の定数倍，四則演算，ベキ乗，根を
開くこと）のみを用いて組み立てられる関数」→例：）

- 有理関数（functio raionalis）（整関数，有理関数，整数ベキのみ含む）→例：

- 非有理関数（functio irrationalis）
 - 阳関数（functio explicita，ベキ根号で表記可能）→例：
 - 陰関数（functio implicita，方程式で表記される）→例：

2) 超越関数（functio transcendens）＝「超越的演算が変数に作用」→例：

2.3 『無限解析入門』第1巻に見られるラブニッツ流微分積分学の展開

☆ 「分母関数」について（第2章）：27

- 分数関数 の分子の単純化（実数，あるいは虚数）と同個
 数の単純化 分子の分母分解可能。

24[オイラー 2001], 2, 8, 41, 7f 頁
25[オイラー 2005], 2-5 頁
26[オイラー 2001], 3f 頁
27[オイラー 2001], 26-40 頁。
☆三角（関数）の無限級数表示,「オイラーの公式」（第8章）：

\[
\cos nz = \frac{(\cos z + \sqrt{-1} \sin z)^n + (\cos z - \sqrt{-1} \sin z)^n}{2} \\
\sin nz = \frac{(\cos z + \sqrt{-1} \sin z)^n - (\cos z - \sqrt{-1} \sin z)^n}{2\sqrt{-1}} \\
\cos nz = (\cos z)^n - \frac{n(n-1)}{1 \cdot 2} (\cos z)^{n-2} (\sin z)^2 + \frac{n(n-1)(n-2)(n-3)}{1 \cdot 2 \cdot 3 \cdot 4} (\cos z)^{n-4} (\sin z)^4 + \cdots \\
\sin nz = \frac{n}{1} (\cos z)^{n-1} \sin z - \frac{n(n-1)(n-2)}{1 \cdot 2 \cdot 3} (\cos z)^{n-3} (\sin z)^3 + \cdots
\]

（弧：無限小，n = i：「無限大数」，iz 有限数\(\nu\rightarrow\sin z = z = \frac{\nu}{i}, \cos z = 1, (1 + \frac{z}{i})^i = e^z\)

\[
\rightarrow \cos \nu = 1 - \frac{\nu^2}{1 \cdot 2} + \frac{\nu^4}{1 \cdot 2 \cdot 3 \cdot 4} - \frac{\nu^6}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} + \cdots \\
\rightarrow \sin \nu = \nu - \frac{\nu^3}{1 \cdot 2 \cdot 3} + \frac{\nu^5}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} - \frac{\nu^7}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7} + \cdots
\]

\[
\cos \nu = \frac{(1 + \frac{\nu}{i})^i + (1 - \frac{\nu}{i})^i}{2}, \sin \nu = \frac{(1 + \frac{\nu}{i})^i - (1 - \frac{\nu}{i})^i}{2\sqrt{-1}} \rightarrow e^\nu = \cos \nu + \sqrt{-1} \sin \nu
\]

4 文献

1 次文献（翻訳も含む）

[Leibniz A] Gottfried Wilhelm Leibniz *Sämtliche Schriften und Briefe*, herausgegeben von Der Deutschen Akademie der Wissenschaften zu Berlin (Berlin: Akademie Verlag, 1923-).

28[オイラー 2001], 114f, 120頁.

2次文献

林 知宏『無限小量をめぐる論争と基礎づけの問題，ライプニッツ、ヴァリ
ニョン，ヘルマン』，『数学史の研究』（京都大学数理解析研究所講究録 1195，
2001 年）所収，14-37 頁。

林 知宏『人間知性新論』の数学史的背景』，『ライプニッツ』（『思想』2001
年 10 月号）（岩波書店，2001 年）所収，278-297 頁。

林 知宏『ライプニッツ：普遍数学の夢』（東京大学出版会，2003 年）。

林 知宏『ライプニッツと円周率』，『数学文化』1（日本評論社，2003 年），
49-58 頁。

林 知宏『ライプニッツの 2 進法：その歴史的評価を再考する』，『學習院高
等科紀要』2（2004 年），69-103 頁。

林知宏『アザック・ニュートンの 1680（？）年草稿「曲線の幾何学」つ
いて』，『京都大学数理解析研究所講究録』1625（2009 年），45-55 頁。

林知宏『数学史講義（第 3 回）：バリ時代（1672-1676）のライプニッツ』，『学
習院高等科紀要』7（2009 年），31-73 頁。

林知宏『ライプニッツの数学：方程式論と代数的思考様式』，[酒井他 2009]
所収，37-56 頁。

林 知宏『数学史講義（第 6 回）：ニュートンの数学 1』，『學習院高等科紀要』
10（2012 年），29-95 頁。

林 知宏『数学史講義（第 7 回）：ニュートンの数学 2』，『學習院高等科紀要』
11（2013 年），13-66 頁。

林 知宏『数学史講義（第 8 回）：ニュートンの数学 3』，『學習院高等科紀要』
12（2014 年），15-46 頁。

林 知宏『数学史講義（第 6 回）：ニュートンの数学 4』，『學習院高等科紀要』
13（2015 年），17-69 頁。

林知宏『バリのライプニッツ』，『數學文化』26（日本評論社，2016 年），1-12 頁。

林知宏『數學史講義（第 6 回）：ニュートンの数学 5』，『學習院高等科紀要』
14（2016 年刊行予定）。

原 亨吉『近世の数学：無限概念をめぐって』（1975 年 1）（ちくま学芸文庫，
2013 年）。

[マホーニィ 2007] マホーニィ，マイケル・S 『歷史の中の数学』佐々木力訳（1982 年 1）（ちく
ま学芸文庫，2007 年）。